
Highly Accelerated Advanced Multiplier Design for
An Efficient Bandwidth Utilized FFT Computation

M.Sahithi#1,Naseema Shaik#2, A.Jhansi Rani#3,J.Poornima#4,M.Jyothi#5,K.Purnima#6

#1M.Tech student, Department of ECE, K L University
Vijayawada, INDIA

#2, 3, 4, 5,6Department of ECE, K L University

Vijayawada,INDIA
 *Naseema Shaik, Department of ECE, KL University

Vijayawada, INDIA

Abstract— Fast multipliers are essential parts of digital signal
processing systems. The speed of multiply operation is of great
importance in digital signal processing as well as in general
purpose processors today especially since the media processing
took off. We present a Fast fourier transform implementation
using Twin precision technique. The twin precision technique
can reduce the power dissipation by adapting a multiplier to the
bit width of the operands being computed. The algorithm used
here is Baugh-Wooley algorithm. By adapting to actual
multiplication bit-width using twin precision technique, it is
possible to save power, increase speed, double computation
throughput and highly efficient. By using this the execution time
of a Fast fourier transform is reduced with 15% at a 14%
reduction in datapath energy dissipation.

Keywords— Fast Fourier Transform, Highly efficient, Baugh-
Wooley Algorithm.

I. INTRODUCTION

 During the last decade of integrated electronic design
ever more functionality has been integrated on to the same
chip paving the way for having a system on single chip. The
strive for ever more functionality increase the demands on
circuit designers that have to provide the foundations for all
these functionality. With an increased interest and use of
reconfigurable [1] architectures there is a need for flexible and
reconfigurable computational units that can meet the demand
of high speed, high throughput, low speed and area efficiency.
Multiplications are complex to implement and they continue
to give the designers headaches when trying to efficiently
implement multipliers in hardware. Multipliers are therefore
interesting to study, when investigating how to design flexible
and reconfigurable computations.

 Today complex circuits are described in hardware
descriptive languages like Vhdl and verilog and are
synthesized to gate level. A core operation in actual circuits,
especially in Digital signal processing like Filtering,
Modulation, Video processing, Neural networks, Satellite

Communication, Graphics or Control systems etc is
multiplication. In past multiplication was generally
implemented via addition, subtraction and shift operations.
Multiplication can be considered as a series of repeated
additions. The repeated addition method suggested by
arithmetic definition is slow that is almost always replaced by
algorithm that’s make use of positional representation. It is
possible to decompose multipliers into two parts. The first part
is dedicated to generate partial products and the second one
collects and adds them.

 Multiplication is therefore a multi operand operation.
To extend multiplication to both signed and unsigned numbers,
a convenient number system would be the representation of
numbers in two’s complement format. In this we present the
Fast fourier transform implementation using Twin precision
technique. By using the number of multiplications has been
reduced. This can be achieved in less amount of time,
therefore we get high throughput, high efficient, high speed.
The algorithm used here is Baugh-Wooley algorithm.

II. FAST FOURIER TRANSFORM

 Fast fourier transform is an efficient algorithm to
compute the Discrete fourier transform and its inverse. A DFT
decomposes a sequence of values into components of different
frequencies. This operation is useful in many fields but often
computing is too slow to be practical. An FFT is a way to
compute same result more quickly; computing the DFT of N
points is the naïve way it takes O(N2) arithmetical operations,
while FFT computes it in only in O(N log N) operations.

 The DFT is defined by the formula

M.Sahithi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 2957 - 2963

2957

 Evaluating this definition directly require O(N2)
operations. To illustrate the savings of FFT consider the
count of complex multiplications and additions. Evaluating
the sum of DFT’s involves N2 complex multiplications and
N(N-1) addition operations. The well known Cooley-Tucky
algorithm [2] for N a power of 2 can compute the same result
with only (N/2) log2 N complex multiplier and N log2 N
complex additions. A basic element of Butterfly model is
shown in Fig.1.

Fig . 1 Basic butterfly computation in the decimation-in-time
FFT algorithm.

 The butterfly element is used to construct larger

structures to perform larger transformations. A structure of 8-
point FFT using butterfly model is shown in Fig.2. where it
also shown that there are three stages in 8 –point FFT
calculation.

 Fig.2. Eight-point decimation-in-time FFT algorithm.

 From the fig.2. it mainly shows the basic butterfly
model with complex multiplication and addition. So in the
coming topics we present our twin precision technique and we
can show how it easily performed.

III. PROPOSED MODEL

 In this we propose a Twin precision technique for the
fast implementation of Fast Fourier transform using Baugh –
Wooley algorithm.Thia can be seen in the next topics.

A. Twin Precision technique

For a first analysis of the twin-precision [3]

technique, the discussion will be based on an illustration of an
unsigned binary multiplication. In an unsigned binary
multiplication each bit of one of the operands, called the
multiplier, is multiplied with the second operand, called
multiplicand. That way one row of partial products is
generated. Each row of partial products is shifted according to
the position of the bit of the multiplier, forming what is
commonly called the partial-product array. Finally, partial
products that are in the same column are summed together,
forming the final result. An illustration of an 8-bit
multiplication is shown in fig.3

 Fig. 3: Illustration of an unsigned 8-bit multiplication

 Let us look at what happens when the precision of
the operands is smaller than the multiplier we intend to use. In
this case, the most significant bits of the operands will only
contain zeros, thus large parts of the partial-product array will
consist of zeros. Further, the summation of the most
significant part of the partial-product array and the most
significant bits of the final result will only consist of zeros. An
illustration of an 8-bit multiplication, where the precision of
the operands is four bits, is shown in Fig.4.

M.Sahithi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 2957 - 2963

2958

Fig .4. Illustration of an unsigned multiplication, where the
precision of operands is smaller than precision of
multiplication. Unused bits of operands and products, as well
as unused partial products are shown in gray

Fig. 4.shows that large parts of the partial products

are only containing zeros and are, thus, not contributing with
any useful information for the final result. What if these
partial products could be utilized for a second, concurrent
multiplication? Since partial products of the same column are
summed together, it would not be wise to use any of the
partial products that are in the same column as the
multiplication that is already computed. Looking closer at the
4-bit multiplication marked in white in Fig. 4, one can also
observe that the column at position S7 should not be used
either. This is because that column might have a carry from
the active part of the partial-product array that will constitute
the final S7.

 Altogether this makes only the partial products in the
most significant part of the partial-product array available for
a second multiplication. In order to be able to use the partial
products in the most significant part, there has to be a way of
setting their values. For this we can use the most significant
bits of the operands, since these are not carrying any useful
information. If we are only looking at the upper half of the
operands, the partial products generated from these bits are the
ones shown in black in Fig. 5. By setting the other partial
products to zero, it is then possible to perform two
multiplications within the same partial-product array, without
changing the way the summation of the partial-product array
is done. How the partial products, shown in gray, can be set to
zero will be investigated in the implementation section later
on.

Fig .5.Illustration of an unsigned 8-bit multiplication, where a
4-bit multiplication is shown is white is computed in parallel
with a second 4-bit multiplication shown in black.

 Assume, for now, that there is a way of setting
unwanted partial products to zero, then it suddenly becomes
possible to partition the multiplier into two smaller multipliers
that can compute multiplications in parallel. In the above
illustrations the two smaller multiplications have been chosen
such that they are of equal size. This is not necessary for the
technique to work. Any size of the two smaller multiplications
can be chosen, as long as the precision of the two smaller
multiplications together are equal or smaller than the full
precision [4] (NFULL) of the multiplication, equation below.
To be able to distinguish between the two smaller
multiplications, they are referred to as the multiplication in the
Least Significant Part (LSP) of the partial-product array with
size NLSP, shown in white, and the multiplication in the Most
Significant Part (MSP) with size NMSP , shown in black.

 NFULL >= NLSP + NMSP

It is functionally possible to partition the multiplier

into even more multiplications. For example, it would be
possible to partition a 64-bit multiplier into four 16-bit
multiplications. Given a number K of low precision
multiplications their total size need to be smaller or equal to
the full precision multiplication.

 For the rest of this investigation, the precision of the
two smaller multiplications will be equal and half the
precision (N=2) of the full precision (N) of the multiplier.
This is the main twin precision concept which is generally

M.Sahithi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 2957 - 2963

2959

used to do the multiplication very easily. So by using this we
can get the high throughput, high speed. The Fast Fourier
transform can be implemented using Bugh-Wooley algorithm.
This can be explained in the next section.

B. Baugh-Wooley Algorithm

 In the previous section, the concept of twin precision
was introduced by looking at an unsigned multiplication.
However, for many applications signed multiplications are
needed and consequently an unsigned multiplier is of limited
use. In this section a twin-precision multiplier based on the
Baugh-Wooley (BW) algorithm will be presented.The Baugh-
Wooley algorithm [5] is an efficient way to handle sign bits.
The BW algorithm is a relative straightforward way of doing
signed multiplications. Fig. 6 illustrates the algorithm for an
8-bit case, where the partial product array has been
reorganized according the the scheme of Hatamian[6]. The
creation of the reorganized partial-product array comprises
three steps:
 i)the most significant partial product of the first (N – 1)
rows and the last row of partial
 products except the most significant has to be negated,
 ii) a constant one is added to the Nth column,
 iii) the most significant bit (MSB) of the final result is
negated.

Fig. 6. Illustration of an 8-bit Baugh-Wooley multiplication

To combine twin-precision with BW is not as simple

as for the unsigned multiplication,where only parts of the
partial products needed to be set to zero. To be able to
compute two signed N=2 multiplications, it is necessary to
make a more sophisticated modification of the partial-product
array. Fig. 6 shows an illustration of an 8-bit BW
multiplication, where two 4-bit multiplications have been
depicted in white and black. When comparing the illustration
of Fig. 6 with that of Fig. 7 one can see that the only
modification needed to compute the 4-bit multiplication in the

MSP of the array is an extra sign bit '1' in column S12. For the
4-bit multiplication in the LSP of the array, there is a need for
some more modifications. Looking at the active partial-
product array of the 4-bit LSP multiplication (shown in white),
we see that the most significant partial product of all rows,
except the last, needs to be negated. For the last row it is the
opposite, here all partial products, except the most significant,
are negated. Also for this multiplication a sign bit '1' is needed,
but this time in column S4. Finally the MSB of the result
needs to be negated to get the correct result of the two 4-bit
multiplications.

Fig .7.Illustration of signed 8-bit multiplication using Baugh-
Wooley algorithm, where 4-bit multiplication shown in white
is computed in parallel with a second 4-bit multiplication
shown in black.

 To allow for the full-precision multiplication of size N
to coexist with two multiplications of size N=2 in the same
multiplier, it is necessary to modify the partial-product
generation and the reduction tree. For the N=2-bit
multiplication in the MSP of the array all that is needed is to
add a control signal that can be set to high, when the N=2-bit
multiplication is to be computed and to low, when the full
precision N multiplication is to be computed. To compute the
N=2-bit multiplication in the LSP of the array, certain partial
products need to be negated. This can easily be accomplished
by changing the 2-input AND gate that generates the partial
product to a 2-input NAND gate followed by an XOR gate.
The second input of the XOR gate can then be used to invert
the output of the NAND gate. When computing the N=2-bit
LSP multiplication, the control input to the XOR gate is set to
low making it work as a buffer. When computing a full-
precision N multiplication the same signal is set to high
making the XOR work as an inverter.

M.Sahithi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 2957 - 2963

2960

Fig .8. Block diagram of signed 8-bit multiplier using Baugh
Wooley algorithm, where 4-bit multiplication shown in white
is computed in parallel with a second 4-bit multiplication
shown in black.

 Fig. 8 shows an implementation of a twin-precision
8-bit BW multiplier. The modifications of the reduction tree
compared to the unsigned 8-bit multiplier in Fig. 8 consist of
three things; i) the half adders in column 4 and 8 have been
changed to full adders in order to fit the extra sign bits that are
needed, ii) for the sign bit of the 4-bit MSP multiplication
there is no half adder that can be changed in column 12, so
here an extra half adder has been added which makes it
necessary to also add half adders for the following columns of
higher precision, and iii) finally XOR gates have been added
at the output of column 7 and 15 so that they can be inverted.
The simplicity of the BW implementation makes it easy to
also compute unsigned multiplications. All that is needed is to
set the control signals accordingly, such that none of the
partial products are negated, the XOR gates are set to not
negate the final result and all the sign bits are set to zero.

 From the above sessions we have seen the Twin
precision technique fundamentals and also discussed about
Baugh-Wooley algorithm and its implementation using Twin
precision technique. The main aim is to implement Fast
Fourier transform using Twin precision technique. The Fast
Fourier transform butterfly model is shown in Fig.9.

 Fig.9. Butterfly model of Fast Fourier transform

 From the above Fig.9. thesis can be taken in 3 stages.
The Fast Fourier transform consists of multiplication and
addition. The schematic of the butterfly consists of a
complex multiplier, complex adder and complex
subtractor.The butterfly operation processor section
performs the butterfly operation, with each 8-bit
input data width. A complete butterfly operation
requires complex multiplier, complex adder and
complex subtractor.This consists of four real
multipliers, three real adders and three real
subtractors. In butterfly operation when first cycle
is finished then the first result bit of each real
multiplication is ready, then the additions and
subtractions are operated. This takes a long time to
execute. So for that reason we present a Twin
precision technique. In this the multiplication is
done parallely that for example if we want to
execute 64-bit operation we can execute the two 8-
bit multipliers parellaly. By using this we can get
high throughput. It is highly efficient, low power,
high speed. The coding is done by using vhdl and
simulation is done in Xilinx ISE simulator.
Multiplications in above block diagram are performed by
using twin precision technique. Implies, efficient utilization

can be done throughout entire process.

M.Sahithi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 2957 - 2963

2961

 In this paper we present Fast Fourier transform
implementation using Twin precision technique. We select
Baugh –Wooley because compared to Booth algorithm and
Modified Booth algorithms [7] it is highly efficient and high
speed. It can be done in less amount of time. So by this
algoritm and the Twin precision technique we can get high
throughput which is highly efficient, low power, high speed.

IV. SIMULATION RESULTS

Fig. 10.Simulation Results of Baugh-Wooley using Twin

Precision

Fig. 11.Simulation Results of Fast Fourier Transform using

Twin Precision technique and Baugh-Wooley Algorithm.

 Here Fig. 10. shows the result for Baugh-Wooley

algorithm using Twin precision technique. Here in the main
aim of this technique is to get the result in less amount of time.
This reduces the number of multipliers. In Fig.10 two 8-bits
has been taken and the result is 16-bit.This result is divided
into two 8-bits in less amount time.

 In Fig.11.this shows the result of Fast Fourier Transform

using Twin Precision technique.Here the algorithm used is
Baugh-Wooley. We used Baugh-Wooley algorithm Because
this is very efficient algorithm when compared to General
multipliers,Booth algorithm and Modified Booth algorithms.
This Baugh-Wooley algorithm with Twin precision technique
is the best for the multipliers to execute in less amount of time.
In this we generate the Baugh-Wooley algorithm using Twin
precision and Fast Fourier transform using Twin precision.

M.Sahithi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 2957 - 2963

2962

V. CONCLUSIONS

 The Fast Fourier transform implementation
using Twin precision technique has been
implemented. The twin-precision technique, which offers
flexibility at a low implementation overhead, makes it
possible to efficiently deploy these flexible architectures. We
present the Baugh-Wooley algorithm. This makes the
multiplier to run fastly that is high throughput, high speed,
high efficient. It is executed in less amount of time. The main
applications are DSP processors, Communication applications
etc. By adapting to actual multiplication bit-width using twin
precision technique, it is possible to save power, increase
speed, double computation throughput and highly efficient.
By using this execution time of a Fast Fourier transform is
reduced with 15% at a 14% reduction in datapath energy
dissipation.

REFERENCES

[1] G.Venkataramana Sagar and Dr .K.Sr in ivasa Rao
“Reconf igurable FFT System On Chip (SOC) in
In terna t ional Journal of Computer Appl ica t ions (0975-
8887) Volume 11-No.5 ,December 2010.

[2] J. W. Cooley and J. W. Tukey, “An Algorithm for
 the Machine Calculation of Complex Fourier Series,” Math.
 Comput, vol. 19, pp. 297–301, 1965.
[3] M. Själander, H. Eriksson, and P. Larsson-Edefors,

 “An efficient twin precision multiplier,” in Proc. 22nd IEEE Int.
 Conf. Comput. Des., Oct.

 [4] C Magnus Själander and Per Larsson-Edefors,”
 Multiplication Acceleration Through Twin Precision”.
 In IEEE Transactions on VERY LARGE SCALE INTEGRATION
 (VLSI) SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2009.

[5] R. Baugh and B. A. Wooley, “A two’s complement parallel
 array multiplication algorithm,” IEEE Trans. Comput.,
 vol. 22, pp. 1045–1047, Dec. 1973.

 [6] M.Hatamain, “ A 70MHZ 8 bit*8 bit parallel pipelined multiplier in
 2.5µm CMOS,” IEEE Solid state circuits, vol 21, no.4, pp.505- 513,
 Aug.1986.
[7] A. D. Booth, “A signed binary multiplication technique,” Quarterly J.

Mechan. Appl. Math., vol. 4, no. 2, pp. 236–240, 1951.
[8] Xilinx, Inc. Xilinx Libraries Guide, 1999

M.Sahithi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 2957 - 2963

2963

